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1. Problem

ou(t, x)

op = Au(t.x) + o(u(t,x))W, t>0,xecR.

2
A= 68)(2 is the Laplacian and ¢ : R — R is a nice function

(Lipschitz).
@ initial condition Uo,x = Up(x) is continuous and bounded.

o W= atax is centered Gaussian field with covariance
E(W(s, x)W(t,y)) = d(s—t)|x—y|?"2.

Here 1/4 <H<1/2
@ The product o(u) W is taken in Skorohod sense.



Stochastic integral

For a function ¢ : Ry x R — R, the Marchaud fractional
derivative D° is defined as:

DPo(t,x) = Isiingaqﬁ(t,x)

. B < o(t,x) — ¢(t, x +y)
B L T Al

The Riemann-Liouville fractional integral is defined by

Pt x) = r(1m / T ot )y — x)*dy.



Set

1_
H={¢:R,xR - R| 3 e AR, xR) s.t. p(t,x) = 2"

w(t, x)}-

Proposition

H is a Hilbert space equipped with the scalar product

(6,6} = Cr1 / Fols. &) Fi(s, €)|e|'2Mdeds

R+XR

1_H 1_H
— on [ D Ma(t0DE it Xt
R+XR

= &y /Rg[(b(x +¥) — o[ (x + y) — w(x)]|y 2" 2dxdy ,



where
1 .
Cl,H = Zr(2H+1)Sln(7rH),
N ([ H-1 _ H-112 1\
Cop = [F<H+2)] (/O (1 + 13— 4] dt+2H> ,
1 _
G5 = (E_B)BC&;B

The space D(R; x R) is dense in H.



Definition
An elementary process g is a process of the following form

n m
gt x)=>> " Xij1(an) (D (%),

i=1 j=1

where n and m are finite positive integers,

—oo< a <by<---<ap<by<oo, hj <l and X;; are
Fa-measurable random variables for i = 1,...,n. The
stochastic integral of such an elementary process with respect
to W is defined as

n m
/ / gt x)W(dx,at) = > XijW(1(a,61  1n0)
Ry JR i=1 j=1
n m
=YD X [W(bi, ) — W(a, ) — W(bi, hy) + W(ay, hy)].
i=1 j=1



Definition

Let Ay be the space of predictable processes g defined on

R, x R such that almost surely g € H and E[||g||2] < oc. Then,
the space of elementary processes defined as above is dense
in Ay.

For g € Ay, the stochastic integral fRMR a(t,x)W(dx, dt) is
defined as the L?(Q)-limit of stochastic integrals of the
elementary processes approximating g(t, x) in Ay, and we
have the following isometry equality

E <[ | sttxwax dt)f) — £ (lg?)

= G [ [ Elalt.x+ ) alt 0PIy et



Definition (Strong solution)
u(t, x) is a strong (mild random field) solution if for all t € [0, T]
and x € R the process {Gt—s(x — y)o(u(s,y¥))1j0,q(S)} is

integrable with respect to W, where Gi(x) := \/%ﬂ exp {—ﬁ—ﬂ is
heat kernel, and

t
u(tx) = Gerto()+ [ [ Guslx—y)o(s.y. uls. ) Wi, o)
R
almost surely, where

G () = [ Gilx = yun(y)oy.



Definition (Weak solution)

We say the spde has a weak solution if there exists a
probability space with a filtration (Q, 7, P, 7;), a Gaussian noise
W identical to W in law, and an adapted stochastic process
{u(t,x),t>0,x € R} on this probability space (Q, F, P, F;)
such that u(t x) is a strong (mild) solution with respect to
(Q,7,P,F)and W.



Want to study the existence and uniqueness of the solution
(strong or weak)



2. Difficulty
Denote &i(x) = G * up(X).

Naive application of Picard iteration (v = u"*" and u = u"):

t
vt =600+ [ [ Gslx - y)o(s.y. u(s.y)) W(dy. o)
0 JRY
Then following isometry equality
E (VA(t.0)) = €(x)

t
sy [ [ BlGsx—y - 2ols.y + 2 uls.y +2)
0 JR
—Gt s(x—y)a(s.y, u(s,y))]?|z[*" 2 dydzds

&, / / EGE o(x — y)|u(s,y + 2) — (s, y)P|z[2"2dydzds



One difficulty is that we cannot no longer bound
lo(x1) — o(X2) — a(y1) + o(y2)| by a multiple of
|X1 — X2 — y1 + yo| (which is possible only in the affine case).



3. Background

o(u)=au+b: H>1/4.
Balan, R.; Jolis, M. and Quer-Sardanyons, L.

SPDEs with affine multiplicative fractional noise in space with
index § < H < 3.

Electronic Journal of Probability 20 (2015).

General o(u) but with o(0) = 0.

Hu, Yaozhong; Huang, Jingyu; Le, Khoa; Nualart, David;
Tindel, Samy

Stochastic heat equation with rough dependence in space.

Ann. Probab. 45 (2017), 4561-4616.



Introduce a norm || - ||Z¢ for a random field v(t, x) as follows:

Vlize := sup [[V(L,)llr@xr) + sup NT_, v(t),
Vllz; te[0,7] AR T o 2 He
where p>2, 1 < H < ],

1
p

V(Y ey = [ [ Elvie 0 dx} ,

and

1

2
N;‘_H’pV(t) = UR lv(t,-) — v(t, -+ h)pr(QxR)\h\ZH_zdh}

When ¢(0) = 0 we seek the solution in the space Z’;

Theorem (Hu, Huang, Le, Nualart, Tindel, 2017)

When o(0) = 0 and some nice conditions, the solution exists
uniquely in Z%.



However, when o(0) # 0, we cannot show the solution is in Zp.
Even when o(u) = 1 and up = 0 (additive noise) we cannot
show that the solution is in Z),.

We introduce the weighted Z’; space. This weighted space is
bigger than 27



4. Main result
We introduce the weighted Z‘T’ space.

Let A(x) > 0 be a Lebesgues integrable positive function with
Jg A(x)dx = 1. Introduce a norm || - ||z§ . for a random field

v(t, x) as follows:

Vllzz, = s IV gy + 50 ATy V(0

tefo,7] 2

where p >2, 1 < H < 1,

1

M gy = | [ E vt 0P) A0k

and

1

2
V(D= [/ v(t,-) — v(t,- +h)HLp(QxR\h|2H2dh}



We make the following assumptions

(H1) o(u) is at most of linear growth in u uniformly in t and x.
This means
lo(u)| < C(Jul +1),

and it is uniformly Lipschitzianin u, i.e. YV u,v € R
o(u) —o(v)| < Clu—v],

for some constant C > 0.



Theorem

Let A(x) = cy(1 + |x[2)F~1 satisfy [, A\(x)dx = 1. Assume o(u)
satisfies hypothesis (H1) and that the initial data ug is in LQ(R)
and

|
2
N} gt = | [ 1) = tol- + W)l g 22

is finite for some p > % Then, there exists a weak solution to
the stochastic heat equation with sample paths in C([0, T] x R)
almost surely. In addition, for any v < H — %, the process u(-, -)
is almost surely Hélder continuous on any compact sets in

[0, T] x R of Hélder exponent /2 with respect to the time
variable t and of Hélder exponent ~ with respect to the spatial
variable x.



Strong soluton

(H2) Assume that o(t, x, u) € C%([0, T] x R x R) satisfies the
following conditions: |o,(t, x, u)| and |o%,(t, x, u)| are
uniformly bounded:

sup |oy(t,x,u)] < C; (1)
te[0, T],xeR,ueR
sup low,(t, x,u)| < C. (2)

te[0,T],xeR,ucR

Moreover, assume

sup  ATB(X) ol (t, X, i) — ot x, t2)| < Clup — ],
te[0,T],xeR
3)

where \(x) = cy(1 + |x[2)7-1.



Theorem
Let o satisfy the above hypothesis (H2) and that for some

6 * . .
P> zr— lUollp(wy @and /\/%_ pplo are finite. Then the equation

has a unique strong solution. Moreover, for any v < H — %, the
process u(-, -) is almost surely Hélder continuous on any
compact sets in [0, T] x R of Hélder exponent y/2 with respect

fo the time variable t and of Hélder exponent ~ with respect fo
the spatial variable x.



5. Some key estimates

Lemma

Forany A € R, \(x) = v and T > 0, we have

(1+|X\2)

sup SUP)\ /Gr(x YIAy)dy < oc.
0<t<T xeR



Denote
Di(x,h) := Gi(x + h) — Gi(x), D(x, h) = /mDj4(x, h)

Oi(x,y,h) == Gi(x +y+ h)— Gi(x + y) — Gi(x + h) + Gi(x) .
O(x,y, h) = /70y 4(x, ¥, h).

Then

Lemma

For any o, 8 € (0,1), we have

Cs
t%+5

[, 1ix mE|A 2 dhax —
]RZ

and

C
2\ p—1—2ay,,|—1-28 _ _“ap
01ty M2yt 2 oo = e



Lemma

/ |Di(x, h)|2|h2H=2\(z — x)dxdh < Cr ut")\(2),
R2

/ ITe(x, y, h)2|A[2H2|y[2H-2)\(z — x)dxdydh < Cr 273 )(2).
]RS
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